Absolute versus Relative Entropy Parameter Estimation in a Coarse-Grain Model of DNA
نویسندگان
چکیده
Maximum entropy procedures for estimating coarse-grain parameters from molecular dynamics (MD) simulation data are considered within the specific context of the sequence-dependent cgDNA rigid-base model of DNA. We describe a quite general approach that exploits a maximum absolute entropy principle to fit an observed matrix of covariances subject to the constraint of only allowing a prescribed sparsity pattern of nearest-neighbor interactions in the free energy. We also allow indefinite local stiffness-matrix parameter blocks that nevertheless always generate a positive-definite model stiffness matrix. Beginning from a database of atomic-resolution MD simulations of a library of short DNA oligomers in explicit solvent, these procedures deliver a complete parameter set for the cgDNA model. Due to the intrinsic linear structure of DNA and the convergence characteristics of the MD time series data, the maximum absolute entropy parameter set yields significantly improved predictions of persistence lengths, when compared to a previous parameter set that was fit to the same MD data, but using a maximum relative entropy fitting principle and local stiffness-matrix parameter blocks that were constrained to be semidefinite.
منابع مشابه
E-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function
Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...
متن کاملEstimation of Lower Bounded Scale Parameter of Rescaled F-distribution under Entropy Loss Function
We consider the problem of estimating the scale parameter &beta of a rescaled F-distribution when &beta has a lower bounded constraint of the form &beta&gea, under the entropy loss function. An admissible minimax estimator of the scale parameter &beta, which is the pointwise limit of a sequence of Bayes estimators, is given. Also in the class of truncated linear estimators, the admissible estim...
متن کاملCREDIBILISTIC PARAMETER ESTIMATION AND ITS APPLICATION IN FUZZY PORTFOLIO SELECTION
In this paper, a maximum likelihood estimation and a minimum entropy estimation for the expected value and variance of normal fuzzy variable are discussed within the framework of credibility theory. As an application, a credibilistic portfolio selection model is proposed, which is an improvement over the traditional models as it only needs the predicted values on the security returns instead of...
متن کاملEstimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring
This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...
متن کاملDevelopment of an Index-based Regression Model for Soil Moisture Estimation Using MODIS Imageries by Considering Soil Texture Effects
Soil moisture content (SMC) is one of the most significant variables in drought assessment and climate change. Near-real time and accurate monitoring of this quantity by means of remote sensing (RS) is a useful strategy at regional scales. So far, various methods for the SMC estimation using a RS data have been developed. The use of spectral information based on a small range of electromagnetic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Multiscale Modeling & Simulation
دوره 15 شماره
صفحات -
تاریخ انتشار 2017